Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167163, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599261

RESUMO

PMM2-CDG (MIM # 212065), the most common congenital disorder of glycosylation, is caused by the deficiency of phosphomannomutase 2 (PMM2). It is a multisystemic disease of variable severity that particularly affects the nervous system; however, its molecular pathophysiology remains poorly understood. Currently, there is no effective treatment. We performed an RNA-seq based transcriptomic study using patient-derived fibroblasts to gain insight into the mechanisms underlying the clinical symptomatology and to identify druggable targets. Systems biology methods were used to identify cellular pathways potentially affected by PMM2 deficiency, including Senescence, Bone regulation, Cell adhesion and Extracellular Matrix (ECM) and Response to cytokines. Functional validation assays using patients' fibroblasts revealed defects related to cell proliferation, cell cycle, the composition of the ECM and cell migration, and showed a potential role of the inflammatory response in the pathophysiology of the disease. Furthermore, treatment with a previously described pharmacological chaperone reverted the differential expression of some of the dysregulated genes. The results presented from transcriptomic data might serve as a platform for identifying therapeutic targets for PMM2-CDG, as well as for monitoring the effectiveness of therapeutic strategies, including pharmacological candidates and mannose-1-P, drug repurposing.

2.
Pediatr Neurol ; 155: 8-17, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38569228

RESUMO

BACKGROUND: TRAF7-related cardiac, facial, and digital anomalies with developmental delay (CAFDADD), a multisystemic neurodevelopmental disorder caused by germline missense variants in the TRAF7 gene, exhibits heterogeneous clinical presentations. METHODS: We present a detailed description of 11 new TRAF7-related CAFDADD cases, featuring eight distinct variants, including a novel one. RESULTS: Phenotypic analysis and a comprehensive review of the 58 previously reported cases outline consistent clinical presentations, emphasizing dysmorphic features, developmental delay, endocrine manifestations, and cardiac defects. In this enlarged collection, novelties include a wider range of cognitive dysfunction, with some individuals exhibiting normal development despite early psychomotor delay. Communication challenges, particularly in expressive language, are prevalent, necessitating alternative communication methods. Autistic traits, notably rigidity, are observed in the cohort. Also, worth highlighting are hearing loss, sleep disturbances, and endocrine anomalies, including growth deficiency. Cardiac defects, frequently severe, pose early-life complications. Facial features, including arched eyebrows, contribute to the distinct gestalt. A novel missense variant, p.(Arg653Leu), further underscores the complex relationship between germline TRAF7 variants and somatic changes linked to meningiomas. CONCLUSIONS: Our comprehensive analysis expands the phenotypic spectrum, emphasizing the need for oncological evaluations and proposing an evidence-based schedule for clinical management. This study contributes to a better understanding of TRAF7-related CAFDADD, offering insights for improved diagnosis, intervention, and patient care.

3.
Front Cell Dev Biol ; 12: 1321282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505260

RESUMO

SYNGAP1 haploinsufficiency results in a developmental and epileptic encephalopathy (DEE) causing generalized epilepsies accompanied by a spectrum of neurodevelopmental symptoms. Concerning interictal epileptiform discharges (IEDs) in electroencephalograms (EEG), potential biomarkers have been postulated, including changes in background activity, fixation-off sensitivity (FOS) or eye closure sensitivity (ECS). In this study we clinically evaluate a new cohort of 36 SYNGAP1-DEE individuals. Standardized questionnaires were employed to collect clinical, electroencephalographic and genetic data. We investigated electroencephalographic findings, focusing on the cortical distribution of interictal abnormalities and their changes with age. Among the 36 SYNGAP1-DEE cases 18 presented variants in the SYNGAP1 gene that had never been previously reported. The mean age of diagnosis was 8 years and 8 months, ranging from 2 to 17 years, with 55.9% being male. All subjects had global neurodevelopmental/language delay and behavioral abnormalities; 83.3% had moderate to profound intellectual disability (ID), 91.7% displayed autistic traits, 73% experienced sleep disorders and 86.1% suffered from epileptic seizures, mainly eyelid myoclonia with absences (55.3%). A total of 63 VEEGs were revised, observing a worsening of certain EEG findings with increasing age. A disorganized background was observed in all age ranges, yet this was more common among older cases. The main IEDs were bilateral synchronous and asynchronous posterior discharges, accounting for ≥50% in all age ranges. Generalized alterations with maximum amplitude in the anterior region showed as the second most frequent IED (≥15% in all age ranges) and were also more common with increasing age. Finally, diffuse fast activity was much more prevalent in cases with 6 years or older. To the best of our knowledge, this is the first study to analyze EEG features across different age groups, revealing an increase in interictal abnormalities over infancy and adolescence. Our findings suggest that SYNGAP1 haploinsufficiency has complex effects in human brain development, some of which might unravel at different developmental stages. Furthermore, they highlight the potential of baseline EEG to identify candidate biomarkers and the importance of natural history studies to develop specialized therapies and clinical trials.

4.
Sci Rep ; 13(1): 22783, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129426

RESUMO

Phosphomannomutase deficiency (PMM2-CDG) leads to cerebellar atrophy with ataxia, dysmetria, and intellectual deficits. Despite advances in therapy, the cognitive and adaptive profile remains unknown. Our study explores the adaptive profile of 37 PMM2-CDG patients, examining its association with parental stress and medical characteristics. Assessment tools included ICARS for the cerebellar syndrome and NPCRS for global disease severity. Behavioral and adaptive evaluation consisted of the Vineland Adaptive Behavior Scale and the Health of the Nation Outcome Scales. Psychopathological screening involved the Child Behavior Checklist and the Symptom Check-List-90-R. Parental stress was evaluated using Parental Stress Index. Results were correlated with clinical features. No significant age or sex differences were found. 'Daily living skills' were notably affected. Patients severely affected exhibited lower adaptive skill values, as did those with lipodystrophy and inverted nipples. Greater severity in motor cerebellar syndrome, behavioral disturbances and the presence of comorbidities such as hyperactivity, autistic features and moderate-to-severe intellectual disability correlated with greater parental stress. Our study found no decline in adaptive abilities. We provide tools to assess adaptive deficits in PMM2-CDG patients, emphasizing the importance of addressing communication, daily living skills, and autonomy, and their impact on parental stress in clinical monitoring and future therapies.


Assuntos
Ataxia Cerebelar , Doenças Cerebelares , Criança , Humanos , Masculino , Feminino , Estudos Transversais , Doenças Cerebelares/diagnóstico , Pais
5.
Nanomaterials (Basel) ; 13(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836292

RESUMO

The encapsulation of bioactive agents through the utilization of biodegradable nanoparticles is a topic of considerable scientific interest. In this study, microcapsules composed of chitosan (CS) and Arabic gum (GA) nanoparticles were synthesized, encapsulating oregano essential oil (OEO) through Pickering emulsions and subsequent spray drying. The optimization of hybrid chitosan and Arabic gum (CS-GA) nanoparticle formation was carried out via complex coacervation, followed by an assessment of their behavior during the formation of the emulsion. Measurements of the size, contact angle, and interfacial tension of the formed complexes were conducted to facilitate the development of Pickering emulsions for encapsulating the oil under the most favorable conditions. The chitosan-Arabic gum capsules were physically characterized using scanning electron microscopy and fitted to the Beerkan estimation of soil transfer (BEST) model to determine their size distribution. Finally, the OEO encapsulation efficiency was also determined. The optimum scenario was achieved with the CS-GA 1-2 capsules at a concentration of 2% wt, featuring a contact angle of 89.1 degrees, which is ideal for the formation of oil/water (O/W) emulsions. Capsules of approximately 2.5 µm were obtained, accompanied by an encapsulation efficiency of approximately 60%. In addition, the hybrid nanoparticles that were obtained showed high biodegradability. The data within our study will contribute fundamental insights into CS-GA nanoparticles, and the quantitatively analyzed outcomes presented in this study will hold utility for forthcoming applications in environmentally friendly detergent formulations.

6.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37762002

RESUMO

The number of genes implicated in neurodevelopmental conditions is rapidly growing. Recently, variants in PPP2R1A have been associated with syndromic intellectual disability and a consistent, but still expanding, phenotype. The PPP2R1A gene encodes a protein subunit of the serine/threonine protein phosphatase 2A enzyme, which plays a critical role in cellular function. We report an individual showing pontocerebellar hypoplasia (PCH), microcephaly, optic and peripheral nerve abnormalities, and an absence of typical features like epilepsy and an abnormal corpus callosum. He bears an unreported variant in an atypical region of PPP2R1A. In silico studies, functional analysis using immunofluorescence, and super-resolution microscopy techniques were performed to investigate the pathogenicity of the variant. This analysis involved a comparative analysis of the patient's fibroblasts with both healthy control cells and cells from an individual with the previously described phenotype. The results showed reduced expression of PPP2R1A and the presence of aberrant protein aggregates in the patient's fibroblasts, supporting the pathogenicity of the variant. These findings suggest a potential association between PPP2R1A variants and PCH, expanding the clinical spectrum of PPP2R1A-related neurodevelopmental disorder. Further studies and descriptions of additional patients are needed to fully understand the genotype-phenotype correlation and the underlying mechanisms of this novel phenotype.


Assuntos
Deficiência Intelectual , Microscopia , Humanos , Masculino , Olho , Fibroblastos , Proteína Fosfatase 2/genética , Fatores de Transcrição
7.
Am J Hum Genet ; 110(7): 1098-1109, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37301203

RESUMO

Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxia Cerebelar/genética , Fenótipo , Ataxia/genética , Testes Genéticos , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Ubiquitina-Proteína Ligases/genética
8.
Clin Case Rep ; 11(4): e7275, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37113642

RESUMO

Key Clinical Message: The presence of more than one genetic/genomic disorder is not uncommon. It is therefore essential to continuously consider new signs and symptoms over time. Administration of gene therapy could be extremely difficult in particular situations. Abstract: A 9-month-old boy presented to our department for evaluation of developmental delay. We found that he was affected by intermediate junctional epidermolysis bullosa (COL17A1, c.3766 + 1G > A, homozygous), Angelman syndrome (5,5 Mb deletion of 15q11.2-q13.1), and autosomal recessive deafness type 57 (PDZD7, c.883C > T, homozygous).

9.
Toxics ; 11(4)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37112571

RESUMO

Surfactants can be found in an ever-widening variety of products and applications, in which the combination of several types of surfactants is used to reinforce their properties, looking for synergistic effects between them. After use, they tend to be discarded into wastewater, ending up in aquatic bodies with concerning harmful and toxic effects. The aim of this study is the toxicological assessment of three anionic surfactants (ether carboxylic derivative, EC) and three amphoteric surfactants (amine-oxide-based, AO), individually and in binary mixtures of them (1:1 w/w), to bacteria Pseudomonas putida and marine microalgae Phaeodactylum tricornutum. Critical Micelle Concentration (CMC) was determined to demonstrate the capacity to reduce surface tension and the toxicity of the surfactants and mixtures. Zeta potential (ζ-potential) and micelle diameter (MD) were also determined to confirm the formation of mixed surfactant micelles. The Model of Toxic Units (MTUs) was used to quantify the interactions of surfactants in binary mixtures and to predict if the concentration addition or response addition principle can be assumed for each mixture. The results showed a higher sensitivity of microalgae P. tricornutum to the surfactants tested and their mixtures than bacteria P. putida. Antagonism toxic effects have been detected in the mixture of EC + AO and in one binary mixture of different AOs; this is to say, the mixtures showed lower toxicity than expected.

10.
J Med Genet ; 60(4): 406-415, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36243518

RESUMO

BACKGROUND: Schaaf-Yang syndrome (SYS) is caused by truncating mutations in MAGEL2, mapping to the Prader-Willi region (15q11-q13), with an observed phenotype partially overlapping that of Prader-Willi syndrome. MAGEL2 plays a role in retrograde transport and protein recycling regulation. Our aim is to contribute to the characterisation of SYS pathophysiology at clinical, genetic and molecular levels. METHODS: We performed an extensive phenotypic and mutational revision of previously reported patients with SYS. We analysed the secretion levels of amyloid-ß 1-40 peptide (Aß1-40) and performed targeted metabolomic and transcriptomic profiles in fibroblasts of patients with SYS (n=7) compared with controls (n=11). We also transfected cell lines with vectors encoding wild-type (WT) or mutated MAGEL2 to assess stability and subcellular localisation of the truncated protein. RESULTS: Functional studies show significantly decreased levels of secreted Aß1-40 and intracellular glutamine in SYS fibroblasts compared with WT. We also identified 132 differentially expressed genes, including non-coding RNAs (ncRNAs) such as HOTAIR, and many of them related to developmental processes and mitotic mechanisms. The truncated form of MAGEL2 displayed a stability similar to the WT but it was significantly switched to the nucleus, compared with a mainly cytoplasmic distribution of the WT MAGEL2. Based on the updated knowledge, we offer guidelines for the clinical management of patients with SYS. CONCLUSION: A truncated MAGEL2 protein is stable and localises mainly in the nucleus, where it might exert a pathogenic neomorphic effect. Aß1-40 secretion levels and HOTAIR mRNA levels might be promising biomarkers for SYS. Our findings may improve SYS understanding and clinical management.


Assuntos
Síndrome de Prader-Willi , Humanos , Síndrome de Prader-Willi/genética , Fenótipo , Mutação , Proteínas/genética , Biomarcadores
11.
Cancer Res ; 82(24): 4670-4679, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36222720

RESUMO

Antibody-drug conjugates (ADC) are antineoplastic agents recently introduced into the antitumor arsenal. T-DM1, a trastuzumab-based ADC that relies on lysosomal processing to release the payload, is approved for HER2-positive breast cancer. Next-generation ADCs targeting HER2, such as [vic-]trastuzumab duocarmazine (SYD985), bear linkers cleavable by lysosomal proteases and membrane-permeable drugs, mediating a bystander effect by which neighboring antigen-negative cells are eliminated. Many antitumor therapies, like DNA-damaging agents or CDK4/6 inhibitors, can induce senescence, a cellular state characterized by stable cell-cycle arrest. Another hallmark of cellular senescence is the enlargement of the lysosomal compartment. Given the relevance of the lysosome to the mechanism of action of ADCs, we hypothesized that therapies that induce senescence would potentiate the efficacy of HER2-targeting ADCs. Treatment with the DNA-damaging agent doxorubicin and CDK4/6 inhibitor induced lysosomal enlargement and senescence in several breast cancer cell lines. While senescence-inducing drugs did not increase the cytotoxic effect of ADCs on target cells, the bystander effect was enhanced when HER2-negative cells were cocultured with HER2-low cells. Knockdown experiments demonstrated the importance of cathepsin B in the enhanced bystander effect, suggesting that cathepsin B mediates linker cleavage. In breast cancer patient-derived xenografts, a combination treatment of CDK4/6 inhibitor and SYD985 showed improved antitumor effects over either treatment alone. These data support the strategy of combining next-generation ADCs targeting HER2 with senescence-inducing therapies for tumors with heterogenous and low HER2 expression. SIGNIFICANCE: Combining ADCs against HER2-positive breast cancers with therapies that induce cellular senescence may improve their therapeutic efficacy by facilitating a bystander effect against antigen-negative tumor cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Imunoconjugados , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Catepsina B/metabolismo , Linhagem Celular Tumoral , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais
12.
Front Psychol ; 13: 997951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248532

RESUMO

The present study intended to investigate, first, the impact of semantic clustering on the recall and recognition of incidentally learned words in a new language, and second, how the interaction between semantic clustering and frequency of occurrence may modulate learning. To that end, Spanish university students watched an intentionally created video which contained Spanish target words that were either semantically related to others of the set, or not semantically linked at all. Furthermore, frequency of appearance changed among target words (1|4|8). All these words were paired with pseudowords that appeared as on-screen text during the videos. Participants were completely naive to the phases and the procedure of the experiment. After viewing the video, participants completed a recall test and a recognition test. Results showed that words presented in semantically unrelated categories were better recalled and better recognized than those presented in semantic clusters, especially when the words were presented more often.

13.
Am J Med Genet A ; 188(10): 3032-3040, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876338

RESUMO

Hemizygous missense variants in the RPL10 gene encoding a ribosomal unit are responsible for an X-linked syndrome presenting with intellectual disability (ID), autism spectrum disorder, epilepsy, dysmorphic features, and multiple congenital anomalies. Among 15 individuals with RPL10-related disorder reported so far, only one patient had retinitis pigmentosa and microcephaly was observed in approximately half of the cases. By exome sequencing, three Italian and one Spanish male children, from three independent families, were found to carry the same hemizygous novel missense variant p.(Arg32Leu) in RPL10, inherited by their unaffected mother in all cases. The variant, not reported in gnomAD, is located in the 28S rRNA binding region, affecting an evolutionary conserved residue and predicted to disrupt the salt-bridge between Arg32 and Asp28. In addition to features consistent with RPL10-related disorder, all four boys had retinal degeneration and postnatal microcephaly. Pathogenic variants in genes responsible for inherited retinal degenerations were ruled out in all the probands. A novel missense RPL10 variant was detected in four probands with a recurrent phenotype including ID, dysmorphic features, progressive postnatal microcephaly, and retinal anomalies. The presented individuals suggest that retinopathy and postnatal microcephaly are clinical clues of RPL10-related disorder, and at least the retinal defect might be more specific for the p.(Arg32Leu) RPL10 variant, suggesting a specific genotype/phenotype correlation.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Microcefalia , Malformações do Sistema Nervoso , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Microcefalia/genética , Microcefalia/patologia , Fenótipo
14.
Environ Sci Pollut Res Int ; 29(56): 84125-84136, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35778662

RESUMO

Due to widespread use of nanoparticles in surfactant-based formulations, their release into the environment and wastewater is unavoidable and toxic for biota and/or wastewater treatment processes. Because of concerns over the environmental impacts of nanofluids, studies of the fate and environmental impacts, hazards, and toxicities of nanoparticles are beginning. However, interactions between nanoparticles and surfactants and the biodegradability of these mixtures have been little studied until now. In this work, the environmental impacts of nanofluids containing mixtures of surfactants and silica nanoparticles were valuated. The systems studied were hydrophilic silica nanoparticles (sizes 7 and 12 nm), a nonionic surfactant (alkyl polyglucoside), an anionic surfactant (ether carboxylic acid), and mixtures of them. The ultimate aerobic biodegradation and the interfacial and adsorption properties of surfactants, nanoparticles, and mixtures during biodegradation were also evaluated. Ultimate biodegradation was studied below and above the CMCs of the individual surfactants. The interfacial and adsorption properties of surfactant solutions containing nanoparticles were influenced by the addition of silica particles. It was determined that silica nanoparticles reduced the capability of the nonionic surfactant alkyl polyglucoside to decrease the surface tension. Thus, silica NPs promoted a considerable increase in the surfactant CMC, whereas the effect was opposite in the case of the anionic surfactant ether carboxylic acid. Increasing concentrations of surfactant and nanoparticles in the test medium caused decreases in the maximum levels of mineralization reached for both types of surfactants. The presence of silica nanoparticles in the medium reduced the biodegradability of binary mixtures containing nonionic and anionic surfactants, and this effect was more pronounced for larger nanoparticles. These results could be useful in modelling the behaviour of nanofluids in aquatic environments and in selecting appropriate nanofluids containing nanoparticles and surfactants with low environmental impact.


Assuntos
Nanopartículas , Dióxido de Silício , Tensoativos/toxicidade , Meio Ambiente , Éteres , Ácidos Carboxílicos
15.
Front Genet ; 13: 652454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495150

RESUMO

Phelan-McDermid syndrome (PMS, OMIM# 606232) results from either different rearrangements at the distal region of the long arm of chromosome 22 (22q13.3) or pathogenic sequence variants in the SHANK3 gene. SHANK3 codes for a structural protein that plays a central role in the formation of the postsynaptic terminals and the maintenance of synaptic structures. Clinically, patients with PMS often present with global developmental delay, absent or severely delayed speech, neonatal hypotonia, minor dysmorphic features, and autism spectrum disorders (ASD), among other findings. Here, we describe a cohort of 210 patients with genetically confirmed PMS. We observed multiple variant types, including a significant number of small deletions (<0.5 Mb, 64/189) and SHANK3 sequence variants (21 cases). We also detected multiple types of rearrangements among microdeletion cases, including a significant number with post-zygotic mosaicism (9.0%, 17/189), ring chromosome 22 (10.6%, 20/189), unbalanced translocations (de novo or inherited, 6.4%), and additional rearrangements at 22q13 (6.3%, 12/189) as well as other copy number variations in other chromosomes, unrelated to 22q deletions (14.8%, 28/189). We compared the clinical and genetic characteristics among patients with different sizes of deletions and with SHANK3 variants. Our findings suggest that SHANK3 plays an important role in this syndrome but is probably not uniquely responsible for all the spectrum features in PMS. We emphasize that only an adequate combination of different molecular and cytogenetic approaches allows an accurate genetic diagnosis in PMS patients. Thus, a diagnostic algorithm is proposed.

16.
Glycobiology ; 32(2): 84-100, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34420056

RESUMO

Congenital disorders of glycosylation (CDG) include 150 genetically and clinically heterogeneous diseases, showing significant glycoprotein hypoglycosylation that leads to pathological consequences in multiple organs and systems whose underlying mechanisms are not yet understood. A few cellular and animal models have been used to study specific CDG characteristics, although they have given limited information due to the few CDG mutations tested and the still missing comprehensive molecular and cellular basic research. Here, we provide specific gene expression profiles, based on ribonucleic acid (RNA) microarray analysis, together with some biochemical and cellular characteristics of a total of nine control Epstein-Barr virus-transformed lymphoblastoid B cell lines (B-LCL) and 13 CDG B-LCL from patients carrying severe mutations in the phosphomannomutase 2 (PMM2) gene, strong serum protein hypoglycosylation and neurological symptoms. Significantly dysregulated genes in PMM2-CDG cells included those regulating stress responses, transcription factors, glycosylation, motility, cell junction and, importantly, those related to development and neuronal differentiation and synapse, such as carbonic anhydrase 2 (CA2) and ADAM23. PMM2-CDG-associated biological consequences involved the unfolded protein response, RNA metabolism and the endoplasmic reticulum, Golgi apparatus and mitochondria components. Changes in the transcriptional and CA2 protein levels are consistent with the CDG physiopathology. These results demonstrate the global transcriptional impact in phosphomannomutase 2-deficient cells, reveal CA2 as a potential cellular biomarker and confirm B-LCL as an advantageous model for CDG studies.


Assuntos
Defeitos Congênitos da Glicosilação , Infecções por Vírus Epstein-Barr , Animais , Linhagem Celular , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Glicosilação , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Fosfotransferases (Fosfomutases)/deficiência , RNA/metabolismo
17.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830450

RESUMO

Although it is known that textile wastewater contains highly toxic contaminants whose effects in humans represent public health problems in several countries, studies involving mammal species are scarce. This study was aimed to evaluate the toxicity profile of 90-days oral administration of textile dyeing effluent (TDE) on oxidative stress status and histological changes of male mice. The TDE was collected from the textile plant of Monastir, Tunisia and evaluated for the metals, aromatic amines, and textile dyes using analytical approaches. Metal analysis by ICP-MS showed that the tested TDE exhibited very high levels of Cr, As, and Sr, which exceeded the wastewater emission limits prescribed by WHO and Tunisian authority. The screening of TDE through UPLC-MS/MS confirmed the presence of two textile dyes: a triphenylmethane dye (Crystal violet) and a disperse azo dye (Disperse yellow 3). Exposure to TDE significantly altered the malondialdehyde (MDA), Conjugated dienes (CDs), Sulfhydryl proteins (SHP) and catalase levels in the hepatic and renal tissues. Furthermore, histopathology observation showed that hepatocellular and renal lesions were induced by TDE exposure. The present study concluded that TDE may involve induction of oxidative stress which ensues in pathological lesions in several vital organs suggesting its high toxicity. Metals and textile dyes may be associated with the observed toxicological effects of the TDE. These pollutants, which may have seeped into surrounding rivers in Monastir city, can cause severe health malaise in wildlife and humans.


Assuntos
Corantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Têxteis/efeitos adversos , Águas Residuárias/toxicidade , Animais , Arsênio/farmacologia , Arsênio/toxicidade , Compostos Azo/efeitos adversos , Compostos Azo/farmacologia , Cromo/farmacologia , Cromo/toxicidade , Corantes/efeitos adversos , Corantes/química , Poluentes Ambientais/toxicidade , Humanos , Metais/efeitos adversos , Metais/farmacologia , Camundongos , Tunísia , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade
18.
J Clin Med ; 10(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830610

RESUMO

Overwhelming evidence demonstrates an important role of the gut microbiome in the development of a wide range of diseases, including obesity, metabolic disorders, and mental health symptoms. Indeed, interventions targeting the gut microbiome are being actively investigated as a therapeutic strategy to tackle these diseases. Given that obesity and mental health symptoms are both hallmarks of Prader-Willi syndrome, targeting the gut microbiome may be a promising therapeutical strategy. Only a few studies have investigated the gut microbiome in the context of Prader-Willi syndrome and assessed the efficacy of probiotic supplementation as a therapeutic strategy for this disease. Here, we review the knowledge obtained to this date regarding the gut microbiome in individuals with Prader-Willi syndrome. The limited evidence available indicate that probiotic supplementation improves some metabolic and mental health aspects, however further studies are warranted to determine whether targeting the gut microbiome may constitute a safe and efficient strategy to treat individuals with Prader-Willi syndrome.

19.
Front Pediatr ; 9: 717864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708008

RESUMO

Phosphomannomutase 2 deficiency (PMM2-CDG) is the most frequent congenital disorder of glycosylation. PMM2-CDG patients develop chronic cerebellar atrophy as a neurological hallmark. However, other acute neurological phenomena such as stroke-like episodes (SLE), epilepsy, migraine, and cerebrovascular events, may also occur, and they are frequently the cause of disability and impaired quality of life. Among these, SLE are among the most stressful situations for families and doctors, as their risk factors are not known, their underlying pathomechanisms remain undiscovered, and clinical guidelines for diagnosis, prevention, and treatment are lacking. In this paper, the recent SLE experiences of two PMM2-CDG patients are examined to provide clinical clues to help improve diagnosis through a clinical constellation of symptoms and a clinical definition, but also to support a neuroelectrical hypothesis as an underlying mechanism. An up-to-date literature review will help to identify evidence-based and non-evidence-based management recommendations. Presently neuropediatricians and neurologists are not capable of diagnosing stroke-like episodes in an unequivocal way, so there is still a need to perform invasive studies (to rule out other acute diseases) that may, in the end, prove unnecessary or even harmful. However, reaching a correct and early diagnosis would lead not only to avoidance of invasive tests but also to better recognition, management, and understanding of the disease itself. There is a great need for understanding of SLE that may ultimately be very informative for the detection of patients at risk, and the future development of preventive and management measures.

20.
J Pers Med ; 11(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34442375

RESUMO

Exhaustive and comprehensive analysis of pathological traits is essential to understanding genetic diseases, performing precise diagnosis and prescribing personalized treatments. It is particularly important for disease cohorts, as thoroughly detailed phenotypic profiles allow patients to be compared and contrasted. However, many disease cohorts contain patients that have been ascribed low numbers of very general and relatively uninformative phenotypes. We present Cohort Analyzer, a tool that measures the phenotyping quality of patient cohorts. It calculates multiple statistics to give a general overview of the cohort status in terms of the depth and breadth of phenotyping, allowing us to detect less well-phenotyped patients for re-examining or excluding from further analyses. In addition, it performs clustering analysis to find subgroups of patients that share similar phenotypic profiles. We used it to analyse three cohorts of genetic diseases patients with very different properties. We found that cohorts with the most specific and complete phenotypic characterization give more potential insights into the disease than those that were less deeply characterised by forming more informative clusters. For two of the cohorts, we also analysed genomic data related to the patients, and linked the genomic data to the patient-subgroups by mapping shared variants to genes and functions. The work highlights the need for improved phenotyping in this era of personalized medicine. The tool itself is freely available alongside a workflow to allow the analyses shown in this work to be applied to other datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...